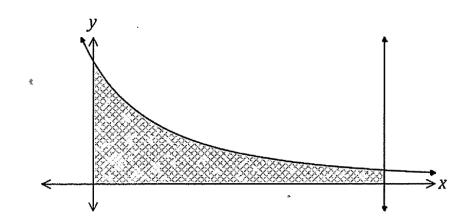
The graph below shows the curve $y = \frac{180}{(2x+5)^2}$ and the line x = 5.

Determine the area of the shaded region, enclosed by the x – axis, the y – axis, the line x = 5 and the curve.

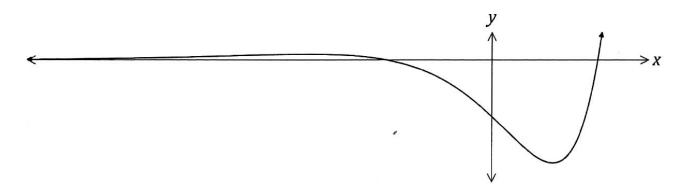


Determine the velocity of the body as it passes through the origin for the last time.

(3 marks)

(c)

The graph of y = f(x) is shown below, where $f(x) = e^{x}(x^{2} - 3)$.



(a) Show that $f'(x) = e^x(x^2 + 2x - 3)$.

(1 mark)

(b) Determine the x – coordinates of the stationary points of f(x). (2 marks)

(c) Given that $f''(x) = e^x(x^2 + 4x - 1)$, use the second derivative to justify that one of the stationary points is a local minimum and that the other is a local maximum. (3 marks)

(a) Use the quotient rule to differentiate $y = \frac{\sin^2 4x}{\cos x^2}$. (Do not simplify your answer.) (2 marks)

(b) Determine $\frac{d}{dx} (2x \sin(3x))$.

(2 marks)

(c) Use your answer from (b) to determine $\int 6x \cos(3x) dx$.

(3 marks)

(a) The function f is such that f(1) = -2 and $f'(x) = \sqrt{3 + x^2}$. Use the increments formula to determine an approximate value for f(1.05).

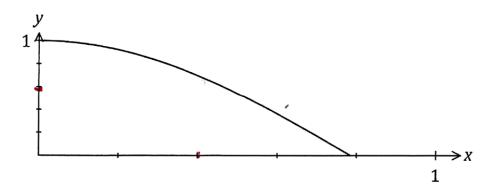
- (b) The function C is such that C(1) = 10 and $C'(x) = 3\sqrt{x} + 3$.
 - (i) Explain why the increments formula would not yield an approximate value for $\mathcal{C}(6)$. (1 mark)

(ii) Determine C(6).

(3 marks)

. 6

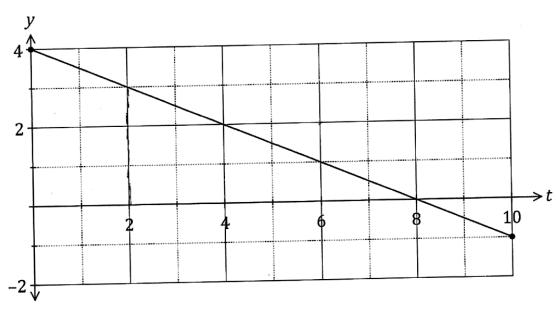
A rectangle has its base on the x – axis, its lower left corner at (0,0) and its upper right corner on the curve shown below, $y = \cos 2x$, $0 \le x \le \frac{\pi}{4}$.



(a) Sketch a possible rectangle on the graph above and explain why the perimeter of the rectangle is given by the function $p(x) = 2x + 2\cos 2x$. (2 marks)

(b) Determine the largest perimeter of the rectangle. Justify your answer. (5 marks)

The graph of y = f(t) is shown below over the interval $0 \le t \le 10$.



(a) Use the graph to determine an estimate for $\int_0^2 f(t) dt$.

(2 marks)

(b) On the axes below, sketch the graph of y = F(x) for $0 \le x \le 10$, where $F(x) = \int_0^x f(t) dt$. (4 marks)